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Introduction
Robert Fathauer presents in [1] a logarithmic spiral tiling of quadrilaterals. In this paper an 
analoguous kind of tessellation is addressed using hexagons having all similar shape. We also give 
examples of degenerated hexagons yielding triangles and quadrilaterals.

Analysis
Figure 1 shows a logarithmic spiral configuration of hexagons. In this example the number of spiral 
arms are given by N=7 and M=3.

The vertices of all hexagons lie on the M spirals. In case of a single spiral (M=1) it is obvious that 
all vertices must lie on this spiral. In case of M=2 the 2 pairs of vertices that lie the fartest away 
from the spiral center and the closest to the center are on the same spiral, whereas the 2 middle 
vertices lie on the other spiral. For 3 or more spirals the vertices of a hexagon lie on 3 different 
spirals.
In the figure the “base” hexagon has a grey border. The spirals decrease in clockwise direction to 
the center. From the figure can be observed that there are N rays of hexagons towards the center, 
with N-1 rays in between those rays, and M-1 rays between the base hexagon and the Nth hexagon 
after the first revolution indicated by S0.

Figure 1: Spiral configuration



The angle α is the rotation angle around the center rotating along the top edge of the hexagon 
from P0 to P1.(red spiral). The rotation angle around the center rotating along the bottom edge from 
P4 to P3 (blue spiral) has the same size α . The angle β is the rotation angle around the center 
rotating along at the middle of the hexagon from P5 to P2 (green spiral). If a hexagon rotates around 
the center along the 3 colored spirals over the sum angle γ it arrives at the next hexagon. Hence, 
the sum angle is written as:

(1) γ =α +β

Rotating P0 over the angle N∗γ brings us to S0 . If there were only 1 spiral (M=1) then S1 would 
coincide with P5: the hexagons would lie against each other. With M bigger than 1, there are M-1 
hexagons in between.
The computation of the size of γ is easier when making another revolution, in this example from
S0 to Y0 . After the 2 revolutions there are still M rotations over angle γ needed for having the 
same direction to the center, in this case from Y0 to Z0 . However, for an extra swing in the rays, we 
introduce an artificial extra skew parameter. So, γ satisfies:

(2) (N + M
2

)∗γ =2∗π + skew

There are no restrictions for α and β , apart from the fact that they must be non-negative.
The exponential growth parameter k will be derived from the ratio ρ  between horizontal and 
vertical characteristics of the hexagon.

(3) ρ=
|P0−P4|
|P0|∗γ

In concreto, this ratio is the quotient of the distance between points P0 and P4 , and on the other hand
the circular curve along P0 over an angle of γ ; the latter curve approximates the spiral curve 
from P0 to N0 . This choice of the ratio has a clear human interpretation.
The points P0, Q0, R0, and S0 lie on a logarithmic spiral by construction. The factor F between 
subsequent points is based on the quotient between P0 and S0 :

(4) FM=
S0

P0

S0 has been obtained from P0 by rotating over N∗γ . Hence:

(5) S0=P0∗e(k+ i)∗N∗γ

Bear in mind that the 4 mentioned points traverse in opposite direction compared to the spiral path 
from P0 to S0 . For this reason the rotation angle is computed as a negative angle by subtracting an 
extra 2∗π . Taking this into account and combining (4) and (5) gives:

(6) FM=ek∗N∗γ∗e i∗(N∗γ −2∗π )

or:
(7) F=ek∗N∗γ /M∗ei∗(N∗γ −2∗π )/M

Using F, formulas for all vertices of the base hexagon can be derived:

(8a) P1=P0∗e(k+ i)∗α



(8b) P5=Q0∗e(k+i)∗α=P0∗F∗e(k+ i)∗α

(8c) P2=P5∗e(k+ i)∗β

(8d) P4=R0∗e(k+i)∗γ=P0∗F2∗e(k+i)∗γ

(8e) P3=P4∗e(k+i)∗α

Substitution of (8d) in (3) leads to an expression for k :

(9) ρ=
|1−ek∗γ∗(2∗N /M +1)∗e i∗skew∗2 /M|

γ

For convenience, define the following variables:

(10) λ=ek∗γ ∗(2∗N /M+1)

(11) D=skew∗2 /M

With these we can convert (9) to:

(12) (ρ∗γ )2=1−2∗λ∗cos(D)+λ 2

For solving this quadratic equation we take the root with the negative sign, because that agrees with 
the simple case of zero skew:

(13) λ 1=cos(D)−√cos(D)2−(1−(ρ∗γ )2)

So, the growth factor k becomes:

(14) k=
log(λ1)

γ∗(2∗N / M+1)

Because the value of λ 1 is smaller than 1, the “growth” factor k has a negative value. This means 
that the base hexagon becomes smaller and smaller when rotating towards the center, as expected.



Special case: quadrilateral
When α  is chosen to be zero, the points P0 and P1 overlap, and also the points P3 and P4 overlap. 
As a consequence the hexagon becomes a quadrilateral. Figure 2 shows two examples of 
degenerated hexagons becoming a quadrilateral; in Figure 2a the spiral has the same number of 
spiral arms as above: N=7 and M=3, whereas in Figure 2b the spiral has N=3 and M=6 resembling 
the structure of Fathauer’s ducks spiral [2].

Special case: triangle
If angle β  equals zero, the points P2 and P5 overlap. The hexagon becomes then a pair of 
triangles like a diabolo. Figure 3a shows the resulting spiral with the same number of spiral arms as 
above: N=7 and M=3. Figure 3b shows a version with deformed edges.
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Figure 2a: Quadrilateral spiral: N=7, M=3 Figure 2b: Quadrilateral spiral: N=3, M=6

Figure 3a: Triangle spiral: N=7, M=3 Figure 3b: Deformed triangle spiral: N=7, M=3
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